Normal performance and expression of learning in the vestibulo-ocular reflex (VOR) at high frequencies.

نویسندگان

  • Ramnarayan Ramachandran
  • Stephen G Lisberger
چکیده

The rotatory vestibulo-ocular reflex (VOR) keeps the visual world stable during head movements by causing eye velocity that is equal in amplitude and opposite in direction to angular head velocity. We have studied the performance of the VOR in darkness for sinusoidal angular head oscillation at frequencies ranging from 0.5 to 50 Hz. At frequencies of > or = 25 Hz, the harmonic distortion of the stimulus and response were estimated to be <14 and 22%, respectively. We measured the gain of the VOR (eye velocity divided by head velocity) and the phase shift between eye and head velocity before and after adaptation with altered vision. Before adaptation, VOR gains were close to unity for frequencies < or = 20 Hz and increased as a function of frequency reaching values of 3 or 4 at 50 Hz. Eye velocity was almost perfectly out of phase with head velocity for frequencies < or = 12.5 Hz, and lagged perfect compensation increasingly as a function of frequency. After adaptive modification of the VOR with magnifying or miniaturizing optics, gain showed maximal changes at frequencies <12.5 Hz, smaller changes at higher frequencies, and no change at frequencies larger than 25 Hz. Between 15 and 25 Hz, the phase of eye velocity led the unmodified VOR by as much as 50 degrees when the gain of the VOR had been decreased, and lagged when the gain of the VOR had been increased. We were able to reproduce the main features of our data with a two-pathway model of the VOR, where the two pathways had different relationships between phase shift and frequency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vestibulo-Ocular Reflex Abnormalities in Posterior Semicircular Canal Benign Paroxysmal Positional Vertigo: A Pilot Study

Introduction: Benign paroxysmal positional vertigo (BPPV), involving the semicircular canals, is one of the most common diseases of the inner ear. The video head impulse test (vHIT) is a new test that examines the function of the canals. This study aimed to investigate the vestibulo-ocular reflex (VOR) gain, gain asymmetry and saccades after stimulating all six canals in patients definitively d...

متن کامل

Hyperactive vestibulo-ocular reflex in cerebellar degeneration: pathogenesis and treatment.

We studied a patient with a cerebellar degeneration and hyperactive vestibulo-ocular reflex (VOR). He complained of oscillopsia and blurred vision with head movement. A twofold increase in VOR gain (peak eye velocity/peak head velocity) at high frequencies was associated with a VOR time constant of 6 seconds (low normal). Visual cancellation ("suppression") of the VOR and smooth pursuit were al...

متن کامل

Vestibular compensation in the horizontal vestibulo-ocular reflex of the goldfish.

Vestibular compensation is the process whereby vestibular system function is restored following unilateral removal of the vestibular receptors (hemilabyrinthectomy). Vestibular compensation was studied in the horizontal vestibulo-ocular reflex (VOR) of the goldfish. Spontaneous VOR (spontaneous nystagmus) was not observed in the goldfish following recovery from the surgery for hemilabyrinthecto...

متن کامل

Impaired motor learning in the vestibulo-ocular reflex in mice with multiple climbing fiber input to cerebellar Purkinje cells.

A unique feature of the cerebellar architecture is that Purkinje cells in the cerebellar cortex each receive input from a single climbing fiber. In mice deficient in the gamma isoform of protein kinase C (PKCgamma-/- mice), this normal architecture is disrupted so that individual Purkinje cells receive input from multiple climbing fibers. These mice have no other known abnormalities in the cere...

متن کامل

Gaze Stabilization by Optokinetic Reflex (OKR) and Vestibulo-ocular Reflex (VOR) During Active Head Rotation in Man

Vestibulo-ocular reflex (VOR)-optokinetic reflex (OKR) interaction was studied in normal human subjects during active sine-like head movements in the horizontal plane for a variety of vestibular-optokinetic stimulus combinations (frequency range, 0.05-1.6 Hz). At low to mid frequencies (< 0.2 Hz) the eyes tended to be stabilized on the optokinetic pattern, independently of whether the head, the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 93 4  شماره 

صفحات  -

تاریخ انتشار 2005